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Abstract 

Using exclusively classical arguments, an equation similar to Schr6dinger's equation is 
derived within the framework of stochastic electrodynamics. 

This equation, when compared to Schr6dinger's, has two extra terms. It is shown that, 
for a harmonic oscillator, these terms are negligible as compared to the ground-state 
average energy. Moreover, with a good approximation, they cancel each other. 

1. Introduction 

As a consequence of Wheeler and Feynman's absorber theory of radia- 
tion (Wheeler & Feynman, 1945), Braffort et al. (1954) have considered 
the existence, at the absolute zero of  temperature, of a classical fluctuating 
electromagnetic field. Application of the Lorentz-invariance to its spectrum 
led Braffort & Tzara (1954), and, more explicitly, Marshall (1963, 1965) 
and Boyer (1969) to derive, for a one-dimensional case, the following 
expression of the spectral density of this zero-point field 

Km 3 
e(m) = 37rc 3 (1.1) 

where K is a constant, having the dimension of  action. 
Braffort & Tzara (1954) and Braffort et al. (1965) have considered the 

effect of the zero-point fluctuating electromagnetic field on a harmonic 
oscillator. For  the non-relativistic case, where e. ~ ^ B(t) may be neglected, 
the equation of motion of the harmonic oscillator is 

2e z 
3C 3 .~ + m.J~ -]- a . x  = eE(t)  (1.2) 

E(t)  is the fluctuating zero-point electric field. 
If one considers equation (1.2) at time t and time t + ~-, and then multiplies 

the left members together and the right members together and takes the 
average over an infinite interval of time t, one obtains an equation relating 
the autocorrelation functions of  x and the autocorrelation function of  
E(t). Taking the Fourier transform of both sides of this equation, the 
Fourier transform of the right-hand side is precisely e 2 times the spectral 
density given by equation (1.1), and one may obtain expressions of  the 
average kinetic and potential energies. Finally, the average total energy 
is given by 

K~~176 [ 1 -  -1 ~~176176 (1.3) (E,o,) = - 5 -  2~ o,, o~,j 
where ,002 = a/m and ~o, = 3mc3/2e 2. 
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Braffort & Taroni (1967) have considered the action of the zero fluctuat- 
ing field on a free electron, moving in a uniform magnetic field H. They 
found that the average total energy of the electron is given by 

where oJ~ = eH/mc. 
Marshall (1963), Surdin et al. (1966) and Boyer (1969), within the frame- 

work of stochastic electrodynamics, have obtained Planck's law of black- 
body radiation, where 

1 
(E(oJ, T)tot) = Km[exp(KoJ/kT) - 1 + 21-] (1.5) 

Marshall (1963) and Surdin (1970) have considered the probability dis- 
tribution for a harmonic oscillator and for a free electron moving in a 
uniform magnetic field. Assuming that the action of the fluctuating zero- 
point field is a Markoffprocess, Chandrasekhar's method (Chandrasekhar, 
1943) was applied in the case where oJ0/oJs < 1. 

Using this method, the probability distributions and, in the stationary 
state, the average total energy, are readily obtained. For the harmonic 
oscillator equation (1.3), and for the free electron in a uniform magnetic 
field equation (1.4), were obtained by Surdin (1970). 

It was also shown (Surdin, 1970) that, although the spectral density 
goes to infinity as ~o 3, the harmonic oscillator and the free electron in a 
uniform magnetic field, due to the form of their band-pass, absorb a 
finite energy from the zero-point field. This remark explains why in stochastic 
electrodynamics one dispenses with subtracting and cut-off procedures. 

If, according to Heisenberg (Heisenberg, 1927; Jammer, 1966), one 
defines the uncertainty of the position 3q and the uncertainty of the momen- 
tum 3p, one obtains (Surdin, 1970) for a harmonic oscillator and for the 
free electron in a uniform magnetic field 

~p. 3q = K (1.6) 

Thus, using exclusively classical arguments, the results obtained in 
stochastic electrodynamics would be the same as those obtained in quantum 
electrodynamics if one wrote 

K=h  (1.7) 

As stated above, K is a constant obtained by purely classical considera- 
tions, i.e. from Lorentz-invariance of the spectrum of the zero-point 
fluctuating electromagnetic field. 

The derivation, within the framework of stochastic electrodynamics, 
of SchrSdinger's equation would achieve, if not a complete identification, 
at least a parallel between wave mechanics and stochastic electrodynamics. 
The remainder of this article will be devoted to the derivation of 
Schr6dinger's equation. 
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2. Preliminary Remarks 
A formal analogy between the differential equation giving the probability 

p(x, t), for a system in Brownian motion involving a Markoff process and 
the Schrbdinger equation was noticed by M6tadier (1931), F{irth (1933) 
and developed recently by Comisar (1965). 

The analogy between p(x,t) and Schr~dinger's wave function ~b is 
inconsistent, mainly because 

(1) the probability density for a Brownian motion is given by p(x, t) 
and according to this analogy should be given by ~b in wave 
mechanics, whereas, in fact, it is ~b. r 

(2) to complete the analogy one has to consider an imaginary dif- 
fusion coefficient. 

Later work by Kershaw (1964), Nelson (1966), de la Pefia-Auerbach 
(1967) and Boyer (1968) has improved the analogy by considering that ~b 
is analogue to ([p(x,t)]. The analogy requires the diffusion coefficient 
D to be real and equal to D = h/2m. In other words, a classical system in 
Brownian motion is subject to random fluctuations in position, whose 
scale is determined by li/2m. Writing D = h/2m constitutes an entirely 
independent postulate, which appears in the same way in quantum mechanics 
(de la Pefia-Auerbach, 1967). 

A critical analysis of some of the above-mentioned papers was made by 
Gilson (1968). His main conclusion is that the only situation where stochastic 
theory and the Schr6dinger equation could be consistent, for a real potential 
function, is when the coefficient of diffusion is identically zero. 

The derivation of Schr6dinger's equation given hereafter is considered 
to be free from the objection raised by Gilson. It is based entirely on classical 
considerations and obtained by a systematic use of the results of stochastic 
electrodynamics referred to in the introduction. The actual mathematical 
approach follows closely that given by Olbert in Hayakawa's paper 
(Hayakawa, 1965). 

3. The Derivation of Sehr6dinger's Equation 
Consider the one-dimensional generalised Langevin equation 

+ ~Sc - 1F(x ,  t) = A(t) (3.1) 5~ 

where F(x, t) is an external field of force and A (t) is the fluctuating field 
whose action on the system is considered to be a Markoff process. 

Marshall (1963) and Surdin (1970) have shown how equation (3.1) may 
be obtained from the equation of motion of the harmonic oscillator 
[equation (1.2)] when oJ0/ws ~ 1. 

The Fokker-Planck equation giving the probability distributionf(x,p, t), 
with p = m. ~ is then (Chandrasekhar, 1943) 

Of+ pOf  + F(x, ~-- 0 Sm2 02f (3.2) 
Ot mOx t )op=-op~ 'P)+  2 0 p  2 
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1 It+At ~2\  

S =  At-,oAt\lim = - ( ( !  A(t)dt I ) (3.3) 

The evaluation of S in the case of a harmonic oscillator and in the case 
of a free electron in a uniform magnetic field was given by Surdin (1970), 
where use was made of equation (1.1). 

Consider now the Fourier transform of the distribution function f i x ,  p, t) 
given by 

+co 

p(x, ~, t) = f f i x ,  p, t) exp(2i~p/K)dp (3.4) 
- o o  

in view of equation (1.6) this is a licit operation. 
Using equation (3.4), equation (3.2) becomes 

Of i K O2 p 2i~ ~,, e __OP 2Sm2..2 
Ot 2mO~Ox K ~ t x ' t ) p = - t ~ O ~  K 2 (3.5) P 

Taking a new set of variables, namely r = x + ~:, r '  = x - ~, equation (3.5) 
becomes 

of 
0t 

iK(O 2 02\] i r - r ' [ O  O) 
2m ~-r 2 0 7 2 / P - ~ 2 ( r - r ' ) F P = - 3 T \ ~ - O r  ' p -  

Sm 2 . 
(r - r')2p (3.6) 

Using the mean value theorem, one has 

( r - r ' ) F  = F ( u ) d u = - [ V ( r ) -  V(r')] (3.7) 
r '  

where V is the potential function of the external field of force. One also has 

r - r ' { O  

Consider a function I(r) such as I"(r) = p(r), then 

I ( r )  - l ( r ' )  - ( r  - r ' ) r ( r )  = �89 - / ) 2  0 (3.9) 

Using equations (3.7), (3.8) and (3.9), equation (3.6) becomes 

Op iK(O 2 42 ) i 
Ot 2m Ur z 472 P + ~2 [V(r ) -  V(r')]p 

SmZ SmZ (r - r') I'(r) = -fl[p(r) - p(r')] + fi(r - r')p'(r) - - ~ f  [I(r) - I(r')] + ~2-  

(3.10) 
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One considers now a function ~b, such as 

p(r, r', t) = ~b(r, t). ~*(r', t) (3.11) 

Equation (3.10) may then be decomposed into 

o~ iK o 2 ~ + 2 V(r, 0 ~ = - /3~  + (r - r') o'(r) - 
Ot 2m Or E 

(3.12) Sin2 ~" " Sin2" r')I'(r) - ~  l~r) + ~ Ir -- 

and a similar equation for ~* with I j ( r ) =  ~b. 
For r = r' one has 

O~ iK 3 2~b+ i SinE-" " (3.13) 
at 2m ar 2 ~ v(r ,  t) ~ = -/34" - -K r ~ t r ,  t) 

and its adjoint equation. 
When /3_--0 and S = 0  the similarity between equation (3.13) and 

Schr6dinger's equation is striking. To achieve complete identification 
(when/3=0, S=0)  one has to use equation (1.7), i.e. K =  h. 

Concluding Remarks 

Equation (3.11) does not achieve a complete separation of variables in 
r and r', since equation (3.12) contains terms in r'. Writing r = r', as one 
should do, cancels these terms. However, as has been noticed by Hayakawa 
(1965), all the other terms may be maintained. This might be an indication 
that Schr0dinger's equation would be an approximation of a more general 
equation, such as equation (3.13). 

An estimation of the order of mangitnde of the terms of the right-hand 
side of equation (3.13) for a harmonic oscillator is given in the Appendix 
below. It is also shown that for the ground-state these terms cancel each 
other. 

To achieve a complete identification of the ensemble of the results 
obtained in stochastic electrodynamics with wave mechanics one has to 

(1) either postulate that K = h; 
(2) or evaluate K independently of quantum mechanics. 

This second alternative, which is in line with the standpoint adopted in the 
present article, has been considered and will be reported elsewhere. 

Appendix 

Consider a harmonic oscillator with V=  (m/2)OOo2X2; Schr6dinger's 
equation is then (Fermi, 1961) 

-d~x2 + 2 m [ E - ~ -  x2]~b=O (A.1) 
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The normalised oscillator eigenfunctions are 

/m<-oo \II4 1 
X/(2". n t) H,,(,~) exp(-~2/2) 

with ~ = ~/(mcoo/h).x; H,(~) is a Hermite polynomial, and 

e .  = ho~0(n + ~) (A.3) 

For the ground state one has 

{meoo~ I/4 
q,0 = \-~gC] exp(-~2/2) (A.4) 

hco 0 
E0= 2 (A.5) 

To estimate the order of magnitude of the terms of the right-hand side 
of equation (3.13) one has to compare E0 to Kfi and to 

Sm z Ir 
K " ~  

Assuming that K = h, one has (Surdin, 1970) 

hfl 2h oJ02 2OJo 
1 (A.6) 

E0 hco o" o~ s oJs 

according to the assumption made above. 
Consider now the expression 

-flti  Sm 2 Ir 
h 

which represents the right-hand side of equation (3.13). I~(x) is not known 
in a closed form; however, since the loss of energy of the oscillator, repre- 
sented by - f ib ,  occurs mostly for small values of x, where ~ is maximum, 
one may restrict the evaluation of I~(x) for small values of x. So that 

h 
Ir - 

m(.o o 
Then 

Since (Surdin, 1970) 

- f ih  Sm:  I4~(x) = - f lh  + Sm (A.7) 

am hOJo 2 
(A.8) 

090 tO s 

equations (A.7) and (A.8) yield 

w~ h + h~~176 = 0 (A.9) 
O) s 09 s 
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In  other words, for  a harmonic  oscillator in the ground state, the energy 
radiated by the oscillator is exactly compensated by the energy yielded to 
the oscillator f rom the fluctuating electromagnetic field. 
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